

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

### Extraction of Zinc(II) and Cadmium(II) by Using Mixtures of Primary Amine N1923 and Organophosphorus Acids

Qiong Jia<sup>ab</sup>; Conghong Zhan<sup>b</sup>; Deqian Li<sup>a</sup>; Chunji Niu<sup>a</sup>

<sup>a</sup> Key Laboratory of Rare Earths Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, P.R. China <sup>b</sup> College of Chemistry, Jilin University of Nanling Campus, Changchun, P.R. China

Online publication date: 08 July 2010

**To cite this Article** Jia, Qiong , Zhan, Conghong , Li, Deqian and Niu, Chunji(2005) 'Extraction of Zinc(II) and Cadmium(II) by Using Mixtures of Primary Amine N1923 and Organophosphorus Acids', *Separation Science and Technology*, 39: 5, 1111 – 1123

**To link to this Article:** DOI: 10.1081/SS-120028574

URL: <http://dx.doi.org/10.1081/SS-120028574>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## Extraction of Zinc(II) and Cadmium(II) by Using Mixtures of Primary Amine N1923 and Organophosphorus Acids

Qiong Jia,<sup>1,2</sup> Conghong Zhan,<sup>2</sup> Deqian Li,<sup>1,\*</sup> and Chunji Niu<sup>1</sup>

<sup>1</sup>Key Laboratory of Rare Earths Chemistry and Physics, Changchun  
Institute of Applied Chemistry, Chinese Academy of Sciences,  
Changchun, P.R. China

<sup>2</sup>College of Chemistry, Jilin University of Nanling Campus, Changchun,  
P.R. China

### ABSTRACT

The extraction of zinc(II) and cadmium(II) from a chloride medium by mixtures of primary amine N1923 and organophosphorus acids [di-(2-ethylhexyl)-phosphoric acid, 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH/EHP), isopropyl phosphonic acid 1-hexyl-4-ethyoctyl ester, *bis*(2,4,4-trimethylpentyl) phosphinic acid, *bis*(2,4,4-trimethylpentyl) monothiophosphinic acid, and *bis*(2,4,4-trimethylpentyl) dithiophosphinic acid] has been studied in the present paper. Results show that only the mixtures of N1923 + HEH/EHP and N1923 +

---

\*Correspondence: Professor Deqian Li, Key Laboratory of Rare Earths Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130222, P.R. China; Fax: +86 431 5698041; E-mail: ldq@ciac.jl.cn.

Cyanex272 have synergistic effects on zinc(II), but the other mixtures have no evident synergistic effects. All six mixtures have no evident synergistic effects on cadmium(II). A possible explanation of the different extraction abilities is given based on the structure of the extractants. Furthermore, the possibilities of separating zinc(II) and cadmium(II) with these mixtures are investigated according to the extractabilities. It is possible to separate  $Zn^{2+}$  from bulk cadmium with N1923 and HEH/EHP mixtures and separate  $Cd^{2+}$  from bulk zinc with N1923 and Cyanex301 mixtures.

**Key Words:** Extraction; Zinc(II); Cadmium(II); Primary amine N1923; Organophosphorus acids.

## INTRODUCTION

Solvent extraction is one of the most efficient methods for separation technology. During the past decades, organophosphorus reagents have been used to extract and separate metal ions extensively. Earlier works were mainly concentrated on di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH/EHP).<sup>[1,2]</sup> Isopropyl phosphonic acid 1-hexyl-4-ethyloctyl ester (HEOPPA) is a newly developed extractant, with a  $pK_a$  value of 5.49, which has been used to extract transition metals and rare earths.<sup>[3]</sup> In recent years, several new phosphinic acids introduced by the Cyanamid Co. (Niagara Falls, Ontario, Canada) attracted much attention. The extraction of  $Zn^{2+}$  from sulphate and nitrate solutions by *bis*(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272), *bis*(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) and *bis*(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) has been studied in detail.<sup>[4-7]</sup> Benito et al.<sup>[8]</sup> investigated the extraction of  $Zn^{2+}$  from chloride medium by Cyanex302 in toluene and determined the extracted species. Alguacil et al.<sup>[9]</sup> compared the extraction of  $Zn^{2+}$  in aqueous hydrochloric media by organophosphorus acids and found that the extraction efficiency followed the order: Cyanex302 > D2EHPA > Cyanex272. The extraction equilibria of  $Cd^{2+}$  from acidic media by Cyanex302 and Cyanex301 have also been studied in previous papers.<sup>[10,11]</sup>

Synergistic effects are an important phenomenon in the solvent extraction and have been studied extensively.<sup>[12,13]</sup> During the last 20 years, synergistic extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by organophosphorus extractants or amines has been reported.<sup>[14-16]</sup> Our group investigated the extraction of  $Zn^{2+}$  by mixtures of primary amine N1923 and HEH/EHP and studied the extraction mechanism in detail.<sup>[17]</sup> More recently, we studied the synergistic extraction

of  $Zn^{2+}$  and  $Cd^{2+}$  by mixtures of N1923 and Cyanex272 and determined the extracted species and the equilibrium constants.<sup>[18]</sup> However, the extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by the mixtures of N1923 and different organophosphorus acids has not been studied systematically. As is well known, it is important to separate  $Zn^{2+}$  and  $Cd^{2+}$  from the same solutions. Since N1923 and organophosphorus acids are common extractants, it is interesting to investigate the separation abilities of the two cations by their mixtures.

In this article, the extraction of  $Zn^{2+}$  and  $Cd^{2+}$  from chloride medium by mixtures of primary amine N1923 and organophosphorus acids (D2EHPA, HEH/EHP, HEOPPA, Cyanex272, Cyanex302, and Cyanex301) is investigated systematically. The differences of the extractabilities are discussed according to the structures of the extractants, and a possible explanation is given. Furthermore, some useful mixing systems have been introduced to separate  $Zn^{2+}$  and  $Cd^{2+}$  according to their synergistic or antagonistic effects on the cations at different extractant proportions.

## EXPERIMENTAL

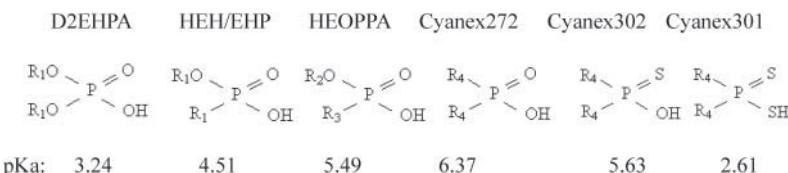
### Reagents

The D2EHPA and HEH/EHP were provided by Tianjin Chemical Reagents Company. The Cyanex272, Cyanex302, and Cyanex301 were kindly supplied by the CYTEC Canada, Inc. The HEOPPA and primary amine N1923 (>99%) were supplied by Shanghai Institute of Organic Chemistry. All the extractants were used as received. The extractants were dissolved in *n*-heptane to the required concentration. Organophosphorus acids were determined by titration with standard sodium hydroxide. The concentration of primary amine N1923 was measured by titration with standard hydrochloric acid solution. The amine N1923 was acidified by an equivalent amount of hydrochloric acid to form the ammonium salt.

Stock solutions of  $ZnCl_2$  and  $CdCl_2$  were prepared with analytical grade reagent (AR) chemicals. The metal ions were analyzed by titration with EDTA. All extraction experiments were performed at constant ionic strength (1.5 mol/L). All the other reagents were of analytical grade.

### Methods

For the equilibrium experiments, 5 mL of the aqueous and the organic solutions, respectively, was mixed and shaken for 30 min at  $293 \pm 1$  K, which was sufficient for equilibrium attainment. After phase separation,  $Zn^{2+}$  and  $Cd^{2+}$


in the aqueous phase were determined by titration with EDTA. The concentration of metal ions in the organic phase was determined by the difference. These concentrations were used to calculate the distribution ratio, *D*.

## RESULTS AND DISCUSSION

### Extraction of $Zn^{2+}$ and $Cd^{2+}$ by Organophosphorus Acids

The extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by organophosphorus acids has been studied, as shown in Figs. 1 and 2. The extractabilities follow the order: Cyanex301 > Cyanex302 > D2EHPA > HEH/EHP > Cyanex272 > HEOPPA. The results are in accordance with Alguacil et al.'s<sup>[19]</sup> where the extraction of  $Zn^{2+}$  follows the order: Cyanex302 > D2EHPA > Cyanex272. The authors regarded this order was because the substitution of the oxygen in the  $P=O$  bond by a sulphur atom in the phosphinic derivative displaces the zinc  $pH_{50}$  extraction value to appreciably more acid levels, thus allowing zinc extraction from more acidic solutions.

The structures of the organophosphorus acids are as follows:



where  $R_1 = CH_2CH(C_2H_5)C_4H_9$ ;  $R_2 = CH(C_6H_{13})C_2H_4CH(C_2H_5)C_4H_9$ ;  $R_3 = i-C_3H_7$ ;  $R_4 = CH_2CH(CH_3)CH_2C(CH_3)_2CH_3$

It can be seen that the extraction efficiency follows the order:  $(RO)_2P(O)OH > R(RO)P(O)OH > (R)_2P(O)OH$ , i.e., D2EHPA > HEH/EHP > Cyanex272. A possible explanation may be that the increase of C-P numbers results in decreasing *K<sub>a</sub>* values and activities of the functional group  $P(O)OH$ . The HEH/EHP and HEOPPA have a similar structure but the latter has a lower extraction capacity because of its higher steric hindrance. This steric hindrance is so high that it even results in the extractabilities of HEOPPA and Cyanex272 following the order: Cyanex272 > HEOPPA, which is contrary to that assumed according to their pKa values. Cyanex302 and Cyanex301 are the mono- and di-thio substitutes of Cyanex272, whose pKa values are less than Cyanex272. Their extracting order of  $Zn^{2+}$  and  $Cd^{2+}$  can be explained by hard soft acid base (HSAB) theory.<sup>[19]</sup> The Cyanex272 is a hard base, while Cyanex302 and Cyanex301 are soft bases and are more prone to react with the soft acids,  $Zn^{2+}$  and  $Cd^{2+}$ . Therefore, the extraction abilities of  $Zn^{2+}$  and  $Cd^{2+}$  follow the order mentioned above.



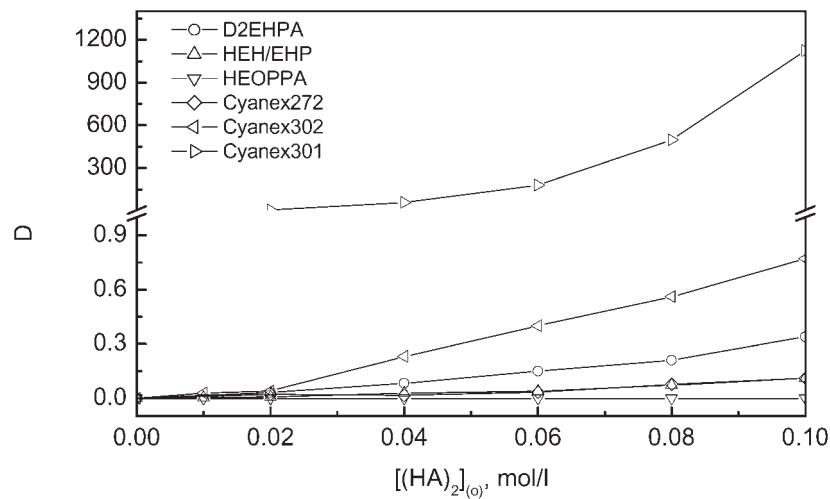



Figure 1. Extraction of  $Zn^{2+}$  by organophosphorus extractants;  $[Zn^{2+}]_{(a)} = 0.02$  mol/L,  $pH = 1.56$ ,  $\mu = 1.50$  mol/L.

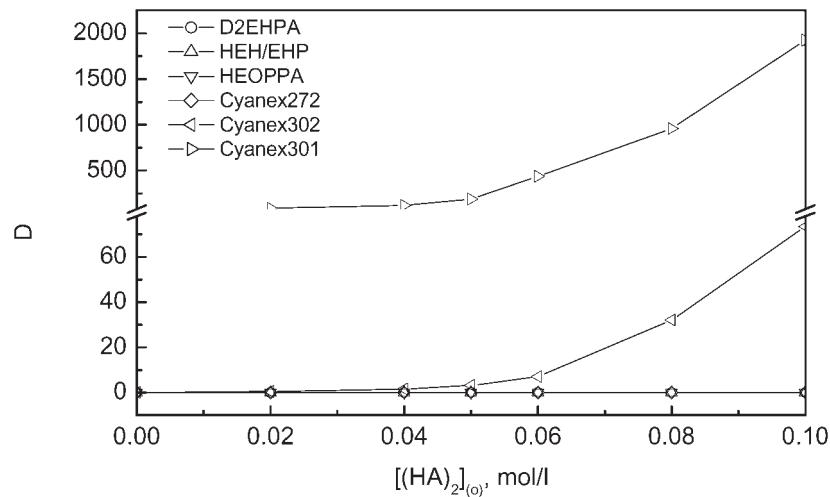
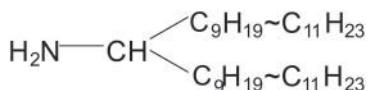




Figure 2. Extraction of  $Cd^{2+}$  by organophosphorus extractants;  $[Cd^{2+}]_{(a)} = 0.02$  mol/L,  $pH = 1.51$ ,  $\mu = 1.50$  mol/L.



### Extraction of $Zn^{2+}$ and $Cd^{2+}$ by Primary Amine N1923

N1923 is a primary amine with the following structure:

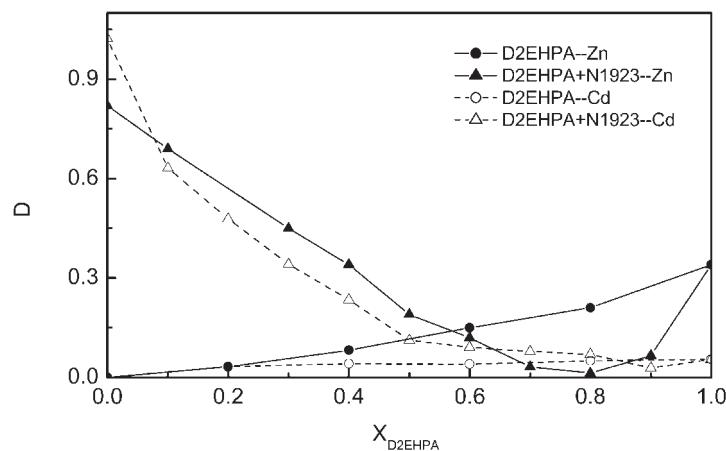


Le et al.<sup>[20,21]</sup> have studied the extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by N1923 and determined the extracted complexes. N1923 exists predominantly as a trimeric species, and the following reaction occurs when  $ZnCl_2$  and  $CdCl_2$  are extracted:



where M represents Zn and Cd, a and o denote aqueous and organic phase, respectively.

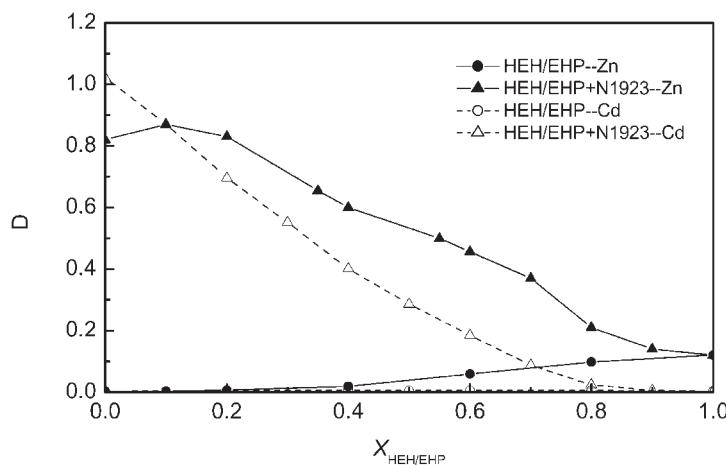
The distribution ratios  $D$  and separation coefficients  $\beta$  of  $Zn^{2+}$  and  $Cd^{2+}$  from 1.5 mol/L NaCl solutions by N1923 are given in Table 1, showing that it is difficult to separate  $Zn^{2+}$  and  $Cd^{2+}$  with N1923 alone.


### Extraction of $Zn^{2+}$ and $Cd^{2+}$ by Mixtures of N1923 and Organophosphorus Acids

The extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by mixtures of N1923 and organophosphorus acids is given in Figs. 3–8, showing that only the mixtures of HEH/EHP or Cyanex272 and N1923 have synergistic effects on the extraction of  $Zn^{2+}$ . However, the other four mixtures have no synergistic effects on  $Zn^{2+}$ , and all six mixtures have no evident synergistic effects on  $Cd^{2+}$ . The synergistic enhancement factors for  $Zn^{2+}$ ,  $D_{max}/(D_1 + D_2)$  for

**Table 1.** D and  $\beta_{Zn/Cd}$  values of  $Zn^{2+}$  and  $Cd^{2+}$  when extracted by N1923.

|                 | [(RNH <sub>3</sub> Cl) <sub>3</sub> ] <sub>(o)</sub> (mol/L) |       |       |       |       |
|-----------------|--------------------------------------------------------------|-------|-------|-------|-------|
|                 | 0.014                                                        | 0.028 | 0.042 | 0.056 | 0.070 |
| $D_{Zn}$        | 0.14                                                         | 0.26  | 0.40  | 0.60  | 0.82  |
| $D_{Cd}$        | 0.16                                                         | 0.39  | 0.57  | 0.85  | 1.02  |
| $\beta_{Zn/Cd}$ | 0.88                                                         | 0.67  | 0.70  | 0.71  | 0.80  |






**Figure 3.** Extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by mixtures of N1923 and D2EHPA;  $[Zn^{2+}]_{(a)} = 0.02 \text{ mol/L}$ ,  $\text{pH} = 1.56$ ,  $\mu = 1.50 \text{ mol/L}$ ;  $[Cd^{2+}]_{(a)} = 0.02 \text{ mol/L}$ ,  $\text{pH} = 1.51$ ,  $\mu = 1.50 \text{ mol/L}$ ;  $N[1923]_{(o)} + [D2EHPA]_{(o)} = 0.20 \text{ mol/L}$ .

N1923 + HEH/EHP, and N1923 + Cyanex272 systems are calculated following Xu et al.<sup>[22]</sup> to be 1.34 and 1.79, respectively.

The synergistic extraction of  $Zn^{2+}$  by N1923 + HEH/EHP and N1923 + Cyanex272 systems has been investigated in our previous works.<sup>[17,18]</sup> The extraction reactions can be expressed as follows.



**Figure 4.** Extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by mixtures of N1923 and HEH/EHP.



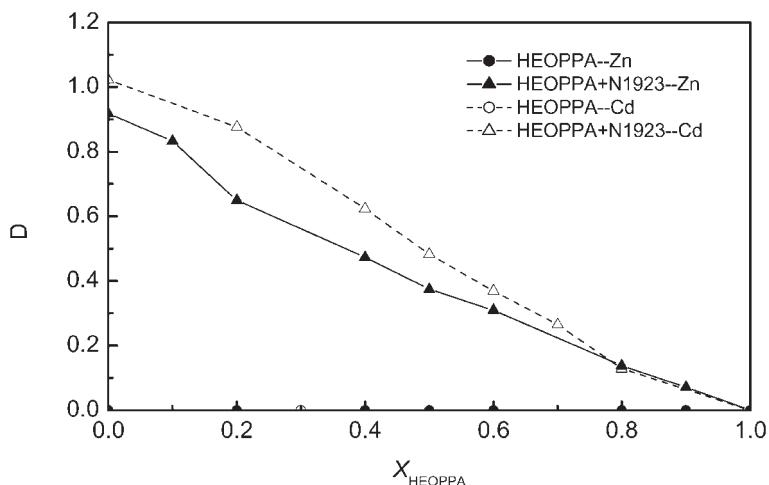
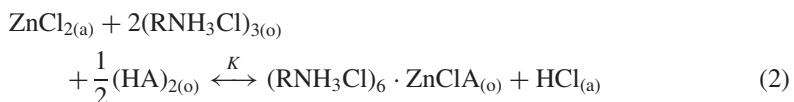
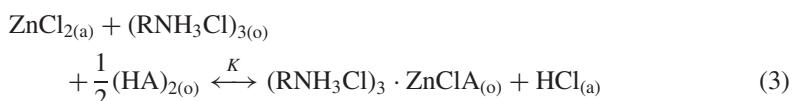





Figure 5. Extraction of Zn<sup>2+</sup> and Cd<sup>2+</sup> by mixtures of N1923 and HEOPPA.

For N1923 + HEH/EHP:



For N1923 + Cyanex272:



The equilibrium constants  $\log K$  were calculated as 1.73 and 1.94, respectively. The synergistic effect of Zn<sup>2+</sup> by N1923 + Cyanex272 is higher than that by N1923 + HEH/EHP.

Since the organophosphorus acids considered exist predominantly as dimeric species,<sup>[1]</sup> a possible explanation can be expressed as the following equation:



The formation of  $\text{RNH}_3 \cdot \text{A}$  decreases the effective concentrations of organophosphorus acids and N1923, resulting in decreasing extractabilities. The pKa values of Cyanex272, Cyanex302, Cyanex301 follow the order: Cyanex272 >



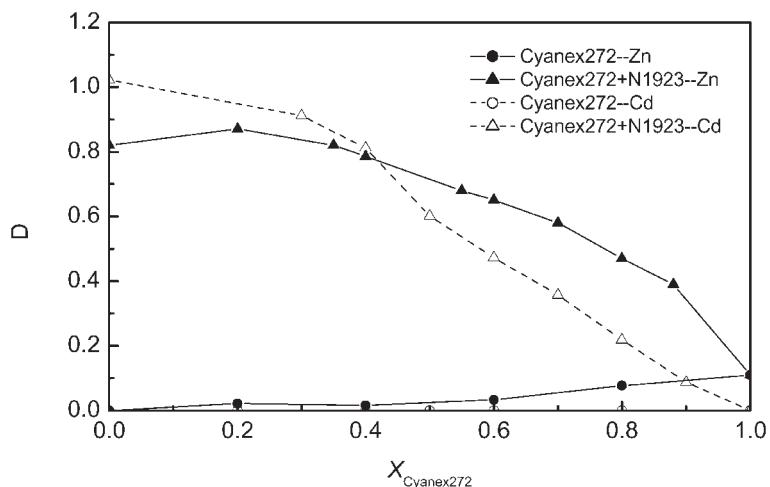



Figure 6. Extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by mixtures of N1923 and Cyanex272.

Cyanex302 > Cyanex301, which results in their reaction abilities with  $(RNH_3Cl)_3$  following the contrary order. This is the reason why the mixtures of N1923 and Cyanex272 have synergistic effects on  $Zn^{2+}$  extraction, while those of N1923 and Cyanex301 have antagonistic effects. Similarly, N1923 + HEH/EHP systems show synergistic effects but N1923 + D2EHPA

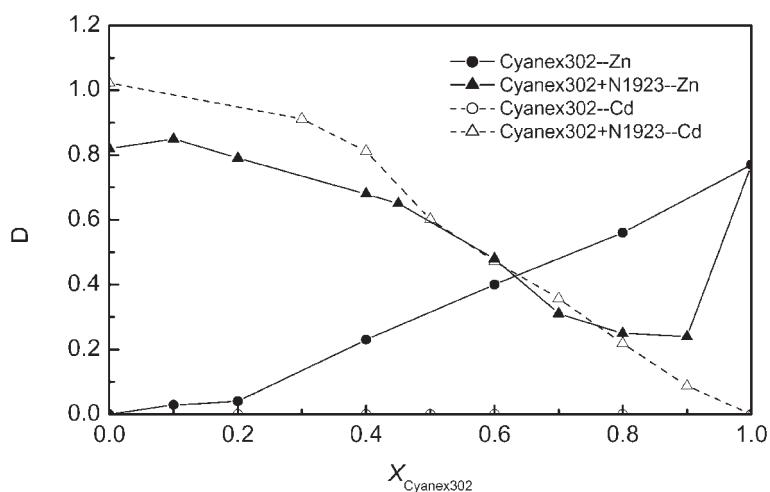



Figure 7. Extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by mixtures of N1923 and Cyanex302.



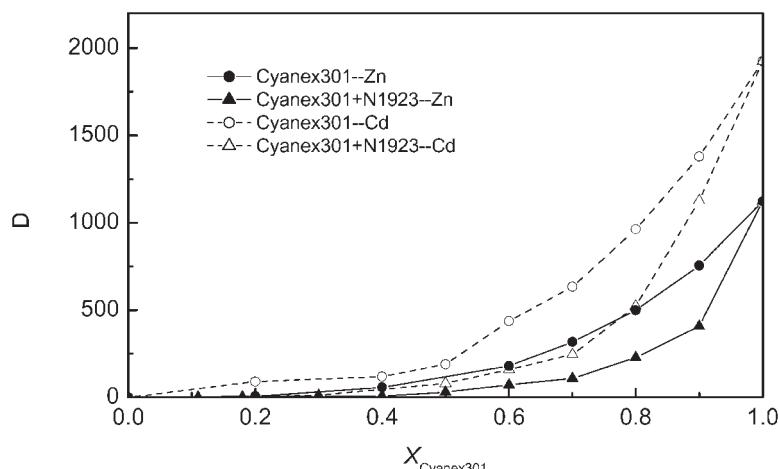



Figure 8. Extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by mixtures of N1923 and Cyanex301.

systems show antagonistic effects for  $Zn^{2+}$  because of the lower  $pK_a$  value of D2EHPA than that of HEH/EHP.

#### Separation of $Zn^{2+}$ and $Cd^{2+}$ with Mixtures of N1923 and Organophosphorus Acids

The separation of  $Zn^{2+}$  and  $Cd^{2+}$  has been a problem of interest all along because  $Zn^{2+}$  and  $Cd^{2+}$  coexist in ores. As mentioned above, it is difficult to separate  $Zn^{2+}$  and  $Cd^{2+}$  with N1923 alone. The organophosphorus acids have low extractabilities for  $Zn^{2+}$  and  $Cd^{2+}$  except Cyanex302 and Cyanex301, so it is of low pragmatic value to study the separation of the two cations by organophosphorus acids alone. Since the mixtures of N1923 and the organophosphorus acids have different extraction effects on  $Zn^{2+}$  and  $Cd^{2+}$ , it is normal to investigate the separation efficiency of the mixtures. In previous work, we have investigated the separation of  $Zn^{2+}$  and  $Cd^{2+}$  by Cyanex272 and its mixture with N1923.<sup>[18]</sup> In the present paper, two effective systems, N1923 + HEH/EHP and N1923 + Cyanex301, are carried out to separate the two cations (see Figs. 4 and 8). It is feasible and advantageous to separate  $Zn^{2+}$  from bulk cadmium with N1923 and HEH/EHP mixtures because of their evident synergistic effects on the extraction of  $Zn^{2+}$ , while these are no similar effects on  $Cd^{2+}$ . On the other hand, N1923 and Cyanex301 mixtures can be used to separate  $Cd^{2+}$  from bulk zinc because of their different



**Table 2.**  $\beta_{Zn/Cd}$  of N1923 + HEH/EHP and N1923 + Cyanex301 systems.

|                   | $X_{N1923}$ |      |      |      |      |      |      |      |
|-------------------|-------------|------|------|------|------|------|------|------|
|                   | 0.1         | 0.2  | 0.3  | 0.4  | 0.5  | 0.6  | 0.8  | 1.0  |
| N1923 + HEH/EHP   | 18.93       | 8.87 | 4.20 | 2.47 | 1.85 | 1.48 | 1.19 | 0.80 |
| N1923 + Cyanex301 | 0.36        | 0.44 | 0.44 | 0.44 | 0.37 | 0.30 | 0.86 | 0.80 |

antagonistic effects on the extraction of the two cations. The separation factors  $\beta_{Zn/Cd}$  of N1923 + HEH/EHP and N1923 + Cyanex301 are calculated as shown in Table 2.

## CONCLUSION

The extraction of  $Zn^{2+}$  and  $Cd^{2+}$  by organophosphorus acids, D2EHPA, HEH/EHP, HEOPPA, Cyanex272, Cyanex302, and Cyanex301 and their mixtures with primary amine N1923 has been determined in the present paper. The differences of extraction abilities by organophosphorus acids alone are discussed according to their structures. Their mixtures with N1923 show different extraction effects on  $Zn^{2+}$  and  $Cd^{2+}$ . Only the mixtures of N1923 + HEH/EHP and N1923 + Cyanex272 have synergistic effects on  $Zn^{2+}$ , in which the enhancement factors are calculated as 1.34 and 1.79, respectively. However, the other four mixing systems have no evident synergistic effects on  $Zn^{2+}$ , and all six mixing systems have no such effects on  $Cd^{2+}$ . The possibility of separating  $Zn^{2+}$  and  $Cd^{2+}$  is discussed according to the different extraction efficiencies. The mixtures of HEH/EHP and N1923 are possible to separate  $Zn^{2+}$  from bulk cadmium, while those of Cyanex301 and N1923 separate  $Cd^{2+}$  from bulk zinc.

## ACKNOWLEDGMENTS

The authors wish to thank Dr. Donato Nucciaroni of Cytec Canada, for supplying Cyanex272, Cyanex302, and Cyanex301. This project is supported by State Key Project of Fundamental Research (G1998061301), National "863" Project (2002AA647070), and the National Natural Science Foundation of China (29771028, 29801004).



## REFERENCES

1. Huang, K.L.; Shu, W.Y.; Zhang, X.L. Extraction equilibria of divalent metal ions by mono(2-ethylhexyl)-2-ethylhexylphosphosphate. *Acta Chim. Sinica* **1989**, *47*, 67–70.
2. Schimmel, K.A.; Ilias, S.; Akella, S. Nondispersive liquid–liquid extraction of Zn(II), Cu(II), Co(II), and Cd(II) from dilute solution with dehpa in a hollow-fiber membrane module. *Sep. Sci. Tech.* **2001**, *36* (5&6), 805–821.
3. Lu, J. Changchun Institute of Applied Chemistry, Chinese Acadamy of Sciences; 1998; Ph.D. Thesis.
4. Sastre, A.M.; Miralles, N.; Figuerola, E. Extraction of divalent metals with *bis*(2,4,4-trimethylpentyl) phosphinic acid. *Solvent Extr. Ion Exch.* **1990**, *8*, 597–614.
5. Sze, Y.K.P.; Xue, L.Z. Extraction of zinc and chromium(III) and its application to treatment of alloy electroplating wastewater. *Sep. Sci. Tech.* **2003**, *38* (2), 405–425.
6. Caravaca, C.; Alguacil, F.J. Study of the ZnSO<sub>4</sub>–Cyanex302 extraction equilibrium system. *Hydrometallurgy* **1991**, *27*, 327–338.
7. Rickelton, W.A.; Boyle, R.J. The selective recovery of zinc with new thiophosphinic acids. *Solvent Extr. Ion Exch.* **1990**, *8*, 783–797.
8. Benito, R.; Menoyo, B.; Elizable, M.P. Extraction equilibria of Zn(II) from chloride medium by Cyanex302 in toluene. *Hydrometallurgy* **1996**, *40*, 51–63.
9. Alguacil, F.J.; Cobo, A.; Caravaca, C. Study of the extraction of zinc(II) in aqueous chloride media by Cyanex302. *Hydrometallurgy* **1992**, *31*, 163–174.
10. Almela, A.; Elizalde, M.P. Solvent extraction of cadmium (II) from acidic media by Cyanex302. *Hydrometallurgy* **1995**, *37*, 47–57.
11. Avila-Rodriguez, M.; Cote, G.; Mendoza, R.N.; Medina, T.I.S.; Bauer, D. Thermodynamic study of the extraction of indium(III) and cadmium(II) by Cyanex301 from concentrated HCl media. *Solvent Extr. Ion Exch.* **1998**, *16*, 471–485.
12. Kong, W.; Wang, C.; Li, D.Q. Studies on synergistic extraction of rare earths(III) with HBTPMPTP and primary amine N1923. *Chem. J. Chinese Univ.* **1997**, *18*, 177–181.
13. Buch, A.; Stambouli, M.; Pareau, D.; Durand, G. Solvent extraction of nickel(II) by mixture of 2-ethylhexanal oxime and *bis*(2-ethylhexyl) phosphoric acid. *Solvent Extr. Ion Exch.* **2002**, *20*, 49–66.
14. Tait, B.K. The extraction of some base metal ions by Cyanex301, Cyanex302 and their binary extractant mixtures with Aliquat 336. *Solvent Extr. Ion Exch.* **1992**, *10*, 799–809.



15. Brunette, J.P.; Lakkis, Z.; Lakkis, M.; Leroy, M.J.F. Effect of inorganic aqueous anions on the synergic extraction of cadmium and zinc with 1-phenyl-3-methyl-4-benzoyl-pyrazol-5-one (HPMBP) and lipophilic ammonium salts. *Polyhedron* **1985**, *4*, 577–582.
16. Sigit; Kalembkiewicz, J.; Leroy, M.J.F.; Brunette, J.P. Synergistic extraction of cadmium and zinc with 1-phenyl-3-methyl-4-benzoylpyrazol-5-ol and *n*-dodecylamine mixtures, emulsion formation. *Solvent Extr. Ion Exch.* **1991**, *9*, 769–786.
17. Han, S.M.; Ma, G.X.; Li, D.Q. Synergistic and antagonistic effects of Zn(II) extraction with HEH/EHP and primary amine N1923. *Acta Metall. Sin.* **1991**, *27*, B75–B80.
18. Jia, Q.; Li, D.Q.; Niu, C.J. Synergistic extraction of zinc(II) by mixtures of primary amine N1923 and cyanex 272. *Solvent Extr. Ion Exch.* **2002**, *20* (6), 751–764.
19. Pearson, R.G. Hard and soft acids and bases. *J. Am. Chem. Soc.* **1963**, *85*, 3533–3539.
20. Le, S.M.; Li, D.Q.; Ni, J.Z. Extraction mechanism of zinc(II) from hydrochloride acid solution by primary amines N1923. *Chinese J. Inorg. Chem.* **1987**, *3*, 80–90.
21. Le, S.M.; Li, D.Q.; Ni, J.Z. Study on the extraction mechanism of Cd(II) with primary amines N1923 from hydrochloride acid solution. *Chinese J. Inorg. Chem.* **1987**, *3*, 51–59.
22. Xu, G.X.; Wang, W.Q.; Wu, J.G. Extraction chemistry of the nuclear fuel (I): synergistic extraction with chelating and complexing extractants. *Atomic Energy Science and Technology* **1963**, *7*, 487–508 (in Chinese).

Received April 2003

Revised September 2003



## **Request Permission or Order Reprints Instantly!**

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Order Reprints" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

### **Request Permission/Order Reprints**

Reprints of this article can also be ordered at

<http://www.dekker.com/servlet/product/DOI/101081SS120028574>